Rl
Y ,
L TECHNICAL MANUSCRIPT E-118
‘ s August 1977

Qﬁ RECOVERY OF ENERGY FROM SOLID WASTE
AT ARMY INSTALLATIONS

construction
engineering
research
laboratory

by
S. A. Hathaway

OCT 4 9iv

G

A\ / 4
=Rl

Approved {or public release; distribution unlimited.



The contents of this report are not to be used for advertising, publication, or
promotional purposes. Citation of trade names does not constitute an
official indorsement or approval of the use of such commercial products.
The findings of this report are not to be construed as an official Department
of the Army position, unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN IT IS NO L. ONGER NEEDED
DO NOT RETURN IT TO THE ORIGINATOR




SECURITY CLASSIFICATION OF THIS PAGE (Wher Dats Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPCRY NUMNER 2. GO!'L A.CCEssloﬂ NOJ 3. RECIPIENT'S CATALOG NUMBER
CERL-TM-E-11¢ {7/ -
- A TIILE(mds > - B :‘“—,——;——-;----4 $...IYPE QF REPORT & PERIOD COVERED
ﬂ RECOVERY OF ENERGY FROM SOLID WASTE AT, [,/ ... |MANUSCRIPT |
ARMY INSTALLATIONS, .2 /\g"" S
6. PERFORMING ORG. REPORT NUMBER

T._AuTHOR() e

/- S. A./hathaway o
r _____ _._.._._—) !’ L \\

9. PERFORMING ORGANIZATION Nmtimi'DDRESS 10 ;aggR‘Ag ERLEMEINTT. PUI:‘OJEEEST, TASK
CONSTRUCTION ENGINEERING RESEARCH LABORATORY - | --2%®ASWORKUDIT nume

P.0. Box 4005 /16 fameariatarfrslon

8. CONTRACT OR GRANT NUMBER(a)

." T // : o . 3l
Cit. T A it L L

Champaign, IL 61820 D
11. CONTROLLING OFFICE NAME AND ADDRESS v . -12. REEQRT-DATE--"
e 5/@4 / lj Augusn 77 |
(/.2 ) //.fl 13. NUMBER OF PAGES
1/~ -l

T MONITORING AGENCY NAME & ADDRESS(I{ differant Trom Controlling Oftice) | 15. SECURITY CLASS. (of this report)

Unclassified
18a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thia Report)
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract antered in Block 20, it different from Repart)

19. SUPPLEMENTANY NOTES
Copies are obtainable from National Technical Information Service
Springfield, VA 22151

19. KEY WORDS (Continue on reverse side If necessary and identity by block number)
heat recovery incineration systems

waste-to-energy conversion systems

modular systems

rIT—A%CTM n reveras side N nevoasssy amd fdendify by bIock mumbor)

This paper provides a technical overview of the current status of solid
waste-to-energy conversion systems scaled for use on Army fixed facilities
and installations. Attention is given to modular (package) and field-erected
heat recovery incineration systems and to using refuse-derived fuel (RDF) in
existing steam generation plants. It is shown that most available systems
have evolved as an art and not as products cf basic scientific inquiry.

The proper performance of many marketed systems cannot be guaranteed ,
because neither long term operational data nor reproducible experimental j:é f’“

DD . WI3  eomomor ? NOV 8513 OREOL K TR UNCLASSIFIED 7/0\5"‘ e} ?? gA

SECUMTY CLASSIFIATION OF THIS FAGE (When Defa Enfer
e e————————— L reeteeoe e i o




BELUMIIY CLASIIFICATIUN Or THIS PAGE(WFhen Data Entared)

\Block 20 contirued.
N

information for design exists. Critical research areas in waste characteri-
zation, heat recovery incineration, and use of RDF are discussed, and
accelerated scientific inquiry within each area is encouraged on a priority

bas1s.;\

A\

> :
X LU UNCLASSIFIED

TECUMTY CLASSINICATION OF THIS PAGK(When Dots Sntorsd)




FOREWORD

This paper was prepared for presentation at the Second American Defense
Preparedness Assoclation Energy/Environment Conference held March 27-31, 1977,
in Kansas City, MO. The work on which this paper was based was performed by
the U.S. Army Construction Engineering Research Laboratory (CERL) for the
Office of the Chief of Engineers, Department of the Army, under Program Ele-~
ment 6.27.31A, Project 4A762731AT41, 'Design, Construction, and Operation
and Mainterance Technology for Military Facilities,'" Task Area T6, "Energy
Systems," Work Unit 011, "Refuse-Derived Fuel (RDF) Use."

Dr. L. R. Shaffer is Technical Director of CERL and COL J. E. Hays
is Commander and Director.
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RECOVERY OF ENERGY FROM SOLID WASTE AT ARMY INSTALLATIONS

INTRODUCTION

The Facilities Engineer 's interest in waste-to-energy conversion
systems has been stimulated by the opportunity to censerve costly and
scarce conventional fuels, the prospect of conducting waste management
operations in a more environmentally compatible manner, the challenge to
reduce the costs of installation waste disposal, and the necessity to
respond positively to the growing number of laws, regulations, and
guidelines bearing upon waste disposal and recovery operations. Favor-
able publicity in the popular literature describing the large potential
payoffs of energy recovery has also provided impetus to program develop-
ment.

This paper discusses available waste-to-energy conversion tech-
nologies thought to have potential installation application, and 11-
luminates major areas where scientific inquiry is encouraged to produce
practicable systems. Emphasis is placed on those technologies involving
direct combustion as the central conversion process. Technologies con-
sidered include modular heat recovery systems, field erected waste-fired
boilers, and the use of refuse-derived fuel (RDF) in existing instal-
lation-scale central boilers. Initial consideration is given to questions
involving characterization of installation waste as it bears upon waste-
to-energy conversion systems.

INPUT CHARACTERIZATION

- ——

"Input' refers not only to conventional mixed trash and refuse, but
to special wastes (pallets, skids, solvents, vehicle lubricant, rubber,
cardboard, ADP cards, and paper, etc.) which are generated usually in
homogeneous streams at the installation.

Salient characteristics of installation waste include scale and
variability. The average installation generates approximately 35 tons
(32 mt) of solid waste daily (Figure 1).2 This is in sharp contrast to
daily waste generation rates of 600 toms (545 mt) or more typically
found in largc cities. The benefit that an Army installation need not
collect and dispose of vast amounts of waste is far offset by diffi-
culties in applying most avai.able recovery technologies, which are
/ ' , being developed to meet the needs of large municipalities and do not

easily scale down to the dimensions of installation requirements.
- Adaption of municipal-scale resource recovery technologies is further
complicated because installation waste is industrial in nature,’”’
unlike the input material for which civilian recovery plants are being
designed.a'9 Military solid waste is typically drier, contains more
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high calorific value materials, and has a greater heat release rate than
civilian municipal-residential waste,

The variability of installation waste takes manv forms. The chemi-
cal makeup (as measured by heating value and proxiusate, ultimate, and
mineral analyses) of waste at one Installation is normally quite different
than at another. The daily generation rate, deniity, condition, and
size distribution of the waste vary in a similar manner. This type of
variability indicates that a recovery technology sccessful at installa-
tion A may be a failure at installation B, which has a similar waste
generation rate. Thus, although a downscaled municipal recovery tech-
nology might perform satisfactorily at ome location, this in no way
confirms its potential at another installation generzating an equivalent
amount of waste.

Also, waste at a single installation is variable with time.!0*!!
For examplie, waste characteristics at place A at time A will usually
be different at time B (Figure 2). A recovery technology designed on
the basis of a cursory waste survey at one time of the year (szmple
period A in Figure 3) could well have been differently sized had the
design survey been conducted just a few months later (sample period B in
Figure 3). Thus, brief waste analyses at the same place but at different
times often lead to different conclusions about the potential of an
energy recovery program.’z_l“ Figures 4, 5, and 6 show combined proxi-
mate , ultimate, and mineral analyses of solid waste generated at several
different Army and Navy installations in CONUS. The data shown reflect
the complex factors which must be taken into account for optimal design.
At any time and at any installation, the specific waste chemistry could
lie-—unpredictably--above or below the range of values shown. Thus, one
would not be likely to achieve a properly functioning system on the
basis of a chemical analysis of 21 small waste sample.15

It is not surprising, then, that the design of energy recovery sys-
tems is more an art than a scie. ce. There do not exist comprehensive,
practicable procedures by whicih the Facilities Engineer can develop a
reliable waste inventory for resource recovery feasibility assessment.
Fortunately, the Army has many creative Facilities Engineers who can
develop their own input characterization procedures and put them to use
effectively. But the possibility is always present that developmental
large-scale recovery technologies will be mistaken as proven for small
scale applications. Development of improved input characterization
procedures and technology scaling methods remain two very deserving
areas of scientific inquiry.

167186

MODULAR HEAT RECOVERY SYSTEMS

Modular systems include predesigned, off-the-shelf, highway-ship-
pable couponents which have a procurement time usually no longer than 8
months. A modular heat recovery line would include the furnace, a
package watertube boiler (with appropriate sootblowing and residue
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capture capability), air pollution control equipment, stack, and ash
removal. The boiler may be equipped with a separate windowbox and
burner so it can remain on line after incinerator shutdown. Equipment
is usually housed in a pre-engineered building which has sufficient
floor area and clearance t~ accommodate a tipping floor-front end loader
waste handling operation. Of central interest are modular incinerators,
which, because of size limits for transportation, rarely have rated
throughput capacities greater than 1 ton/(0.9 mt/hr) of civilian-type
waste.

Modular incinerators are advantageous in that they are less capital
intensive than their custom-designed, field-erected counterparts. Their
disadvantages, however, are substantial. First, modular incinerators
will not accept bulky wastes of the type often found on military in-
stallations (Figure 7). If an average waste load can fit easily into
the trunk of a large sedan, then most modular incinerator feeders will
accept the material. But even nonbulky wastes will not settle evenly in
feed hoppers, and ail too often rather drastic improvisations are re-
quired to compact the material (Figure 8).

Second, because modular incinerators are predesigned for municipal
rather than military waste, which has a significantly nigher heat relase
rate, they must usually be derated by up to 30 percent. Hence, the
average Army installation, which generates 35 tons/day (32 mt/day) of
solid waste, would require a plant processing capacity of at least 50
tons/day (45 mt/day) just to allow for derating. To process waste on a
one-shift basis (6.5 hours effective burn time), this installation would
require an installed hardware capacity of about 8 tons/hour (7.2 mt/hour).
The plant would therefore require a minimum of eight units rated at 1
ton/hour (0.9 mt/hour) operating in parallel. Since each unit must be
fed every 7.5 minutes,'® the plant operator would have to load each
incinerator feeder in less than 1 minute to sustain optimal use and
total plant performunce.

One approach to the derating problem has been to install a water
spray either at the feeder or within the furnace itself. 1t 1is specu-
lated that quenching the waste lowers its heat release rate, makes the
mass throughput capacity of the furnace more controllable, and extends
the load cycle time. However, this approach contradicts one essential
objective cf heat recovery incineration, which is to use heat liberated
economically through combustion in a furnace to evaporate water to stean
in a controlled downstream heat exchanger--not to wet down the charge
and evaporate virgin water in the furnace. Higher than necesary com-
bustion heat losses and lower than desirable system efficiency and
economy are inescapable consequences of this measure. -

Another frequently encountered combustion problem stems from the
advice given by some manufacturers to operate modular incinerators at
furnace temperatures in the neighborhood of 2200°F (1204°C). Stationary
bed incinerators (Figure 9) are particularly prone to severe slagging at
temperatures above 1800°F (982°C), where the viacosity of refuse ash




(particularly glass, ceramics, ferro-alumiram compounds) is in the
plastic range. An expected result iIs accelerated refractory wastage.
Attendant operational problems include plugging of underfire air ports,
bed channeling, and incomplete combustion. Even at lower operating
temperatures, it is not unusual {or some units to require manual ream-
out of frequently inaccessible underfire air ports several times during

an operating shift.

A third major disadvantage ¢f modular incinerators is their ques-
tionable durabilitv, which has spawned divergent approaches toward their
use on Army installations. ‘The first approach is to protect the com-
bustor, either by installing redundant fuinaces and alternating opera-
tion or by processing the waste (shredding, magnetic removal of ferrous
metals, screening for removal of glass and other inerts) before it is
fired. If the processing alternative is selected, the waste will gain a
substantial value added before it enters the furnace, and the plant will
require additional skilled operating personnel and control and safety
systems. The second approach is to fire as-received waste (with over-
sized bulky incombustibles removed), perform the minimal maintenance
required to keep the unit reasonably operational, and repair by re-
piacement when the rising cost of minimal maintenance so warrants. It
is not known which approach toward solving the durability dilemma is
more appropriate, because operational data on these developing systems
are just beginning to accumulate.

Nor are vital parameters known which permit accurate economic and
value analyses of modular incinerators. Routine 0&M requirements,
cyelic maintenance requirements, and length of economic life are cur-
rently only speculative. An often travelled path around the latter
factor is to assume that a modular system will last a specified period
of time, uvsually 20 vears. This assumption has been so widely pro-
liferated that, despite the absence of any substantiative data, it is
being increasingly and dangerously considered a fact.

The controlled air incinerator is presently the most widespread of
the four major modular incinerator configurations. It is a stationary
bed furnace which is semi-continuously fed by a hydraulic ram feeder.
The controlled air incinerator may have a ''piggybacked" secondary
chamber of equal size to the primary chamber (Figure 9), or may consist
only of a primary combustion chamber and a small afterburning volume
immediately after (Figures 10 and 11). In one modular incinerator
resembling the controlled air unit, ash is discharged through refrac-
tory-lined bomb bay doors which close to form the flocor of the furnace.
In the more conventioual systems, ash is removed by positive displace-
ment out the bottom of the primary chamber. Throughput ratings for
municipal waste rarely exceed 1 ton/hour (0.9 mt/hour), meaning that
the average Aray installation may require up to 16 controlled air units
installed in parallel, depending upon operating hours per day and the
approach taken to the durability problem discussed above.
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In addition to the general problems reviewed above, operational
troubles with the controlled air incinerator concern controls, ash
handling, and construction. At one formerly operating $2 million
facility (with no heat recovery equipment), a bypass damper was in-
stalled in refractory-lined breeching between the furnace and the air
pollution control apparatus (a modular fiberglass wet scrubber). 7he
damper was to divert combustion products to the stack upon initiation of
furnace covldown. When a plece uf refractory waste jammed the damper in
its nondiverting position, the control system indicated positive bypass
and automatically shut down scrubber water supply. Hot gases continued
to enter the scrubber, and the resulting fire caused substantial equip-
ment and structure damage. Provision of an inexpensive limit switch
could have prevented this loss. At this facilit- and others, burnout of
undersized motors has been a problem. Many ram feeders show a tendency
to withdraw pieces of burning waste on thelr backecycles, expcsing plant
personnel to smoke and threat of widespread fire. It is not unusual for
proper operation of some controlled air incinerators to rely on controls
that can easily be overriden, At one facility equipped with a tempera-
ture-set quench as a combustion control, the operator disconnected the
overtemperature control system to inhibit spray activation. The result
was partial burnout of the afterburner housing (Figure 12). At yet
another facility, ash is removed from a quench by inclined drag con-
veyor. Bulky materials frequently collect and jam at their withdrawal
point, which has resulted in numerous episodes of shear pin failure,
with the breaking pine launched across the operating floor at hazardous
velocities.

The rutary kiln is an inclined rotating furnace which, with some
modification, has had some munitions demilitarization applications. The
general concepts underlying operation of the rotary kiln modular in-

. } cinerator are shown in Figures 13, 14, and 15. While the controlled air
incinerator has a 2.5-year history in small city heat recovery opera-
tions, th: rotary kiln has no such record, It is theoretically superior
to the controlled air configuration in that it mechanically mixes the
burning material. But, as with the controlled air unit, bulky incom-
bustible materials jam at the ash pass and result in unit outage until
manually removed. The rotary kiln furnuce is about three times more
costly than the controlled air configuration ($450,000 vs $150,000
procurement cost).

Two of the four basic modular furnace configurations have only
recently been developed. The basket grate (Figure 16) is a continuously
fed, inclined rotating cone-shaped grate which has yet to completely
demonstrate its capabilities in energy recovery. Two operational
problems of major significance are the te~dency of incombustibles to
collect in and reduce the effectiveness of the furnace volume, and the
tendency of fine combustibles to sift through the grate while still
burning (Figure 17). The augered bed incinerator resembles the con-
trolled air in appearance (Figures 1B and 19); however, waste is con-
veyed through the furnace by a water-cooled spiral flight. While the
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basket grate is rated at 3 tons/hour (2.7 mt/hr) capacity, the augered
bed incinerator claims an hourly throughput capacity of 5 tons (4.5 mt).
Like the basket grate, use of the augered bed incinerator in CONUS is
limited to a single operating prototype, and few conclusive performance
data are available.

The encouraging aspect of both the basket grate and augered bed in-
cinerators is that they are attempts to provide greater throughput capa-
cities in modular, low-cost packages, With a reliably operating augered
bed incinerator, the average installation could process all its solid
waste In one shift per day. Reduced labor requirements alone argue
persuasively in favor of further developing and applying such promising
technologies.

REFUSE-DERIVED FUEL (RDF)

The rationale for using RDF is based on economic tradeoff: 1is it
less costly to process waste into RDF for use in an existing boiler, or
is it more cost-effective to install new combustion equipment to fire a
less-processed waste? At present, RDF is highly developmental, and its
most immediately foreseeable ugse 1s as a 10%-20% supplement (by as-fired
heating value) in pelletized form with coal in central boilers equipped
with traveling chain grate or spreader stokers. To date, some boiler
tests have been performed, 20722 and there is reason for tempered optimism.
Unfortunately, however, many experiments have not produced the quality
of design~type data required to support engineering feasibility studies
at other locations,

There are as many suggested ways to produce DRDF as there are
individuals who have an interest in producing 1t.%*72% This is essen-
tially because DRDF production is still more an art than a science. Few
data are available to support rational argument for--or against--any
particular pfocess,27 but it is commonly agreed that any process will
include multiple shredding stages, air classification, screening, dry-
ing, and pelleting. One process flow is shown in Figure 20,2% and its
products—predensified "fluff' RDF and DRDF--are shown in Figures 21,
and 22, respectively. The fluff RDF shown is similar to the material
currently cofired in suspension with pulverized coal in Union Electric
Company's utility plant in St. Louis, M0.%?

Recent work has shown that for every unit of waste put into a DRDF
production line, between 0.4 and 0.5 units of DRDF will be produced.®
Hence, between 0.5 and 0.6 units will appear as process rejects (this
includes dust, true reject waste, and some potentially recyclable
materials). These materials remain a handling and disposal requirement.
The average installation generating 35 tons/day (32 mt/day) of solid
waste would be fortunate to realize half that mass as DRDF. And, since
at least half its waste stream would remain a disposal requirement,
there would likely be at best only negligible reduction of its waste
disposal costs.
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The true economy of DRDF production 1s still largely speculative.
It has been shown that a plant with a daily input of 100 tons (91 mt)
can produce DRDF at a per ton input cost between $10 and $12,°! ex-
cluding reject handling, amortization of the $2.3 million equipment and
building investment, and delivery to and handling of DRDF at the using
point. But the capital use factor is well below 0.20 for a one-shift
operation because of high preventive maintenance requirements and low
total system reliability,

There are many points in the DRDF spectrum which offer challenges
to the engineer and scientist. Many waste processing facilities have
poorly designed materials handling facilities, with attendant house-
keeping problems and avoidable excess labor (Figure 23). Such plants
are often symptomatic of the art-not-science approach to waste pro-
cessing, in which modular off-the~shelf equipment is used in an applica-
tion for which it was not designed.

While progress is being made toward producing a DRDF that will
handle like coal, there are still no convincing data to indicate that
the waste fuel pellet will not structurally deteriorate when subjected
to normal coal conveyor vibration (Figure 24), and even under wmoderate
load in coal storage bunkers. Recent research ints the mechanical
properties of DRDF ard DRDF/coal mixtures has indicated that most coal
handling and storage systems will require redesign to reliably handle
the bulk solids which they were not originally intended to accommo~
date.?? Because of its unique properties, DRDF is not prone to coal
type gravity mass flow (Figure 25) from storage bunkers, but instead
will exhibit at best funnel flow (Figures 26 and 27) and most probably
no flow at all. In the latter case, the fuel cannot be easily removed
from its storage vessel by any means. Indeed, under agitation, the rate
of structural deterioration of the pellet is increased, and the fibrous
material becomes even more dense and immovable.

However, it should be noted that certain types of DRDF may flow
from some existing coal storage bunkers.®? Nearly all military coal
storage vessels were fabricated and installed as long as 40 years ago,
when their design was based upon experience and informed engineering
intuition., Only recently has a scientific approach been taken toward
storage and flow of bulk solids which considers their ¢ namic properties
in storage vessels.’" Thus, some existing bunkers handle their coal
well, while others do not. While some of these bunkers might also
successfully handle DRDF and/or DRDF/coal mixtures, this appears to be
attributable to good luck, and the available data are not the type on
which contemporary engineering design is customarily based.

Similarly little scientific research has been performed on the
behavior of DRDF in a boiler. We know that DRDF has a lower calorific
value and ignition temperature than nearly all coals, and usually burns
with a cooler and larger flame. We also know that it has a much more




rapid rate of reaction than coal., The facts argue convincingly that if
the boiler is to be kept at rated capacity when firing DRDF, the furnace
volume must be considerably enlarged (Figure 28).

It 1s not easy to pin down the combustion behavior of DRDF tr make
conclusive assessments about the feasibility of its use. Many standard
testing methods successfully used for coal characterization fail when
attempts are made to similarly analyze DRDF, The American Society for
Testing and Materials has recognized this problem, and its Energy Sub-
committee is currently developing RDF testing procedures. ’

Despite the fact that essentially the same kind of input characteriza-
tion problems plague the use of DRDF as hinder proper incinerator design,
general studies continue to assert that DRDF is easily usable in substantial
numbers of Federal boilers.’® Such studies often take for granted that
established boiler coal feeding equipment will perform adequately with
DRDF. However, the types of flow problems encountered with DRDF in
existing coal bunkers may be anticipated in attempts to pass the waste
fuel through the conventional weigh larry (Figure 29) in travelling
grate applications or the standard mechanical feeder in spreader stoker
systems (Figure 30).

It is generally accepted that a DRDF production line will include
multiple shredding stages, air classification, screening, drying, and
pelleting. Few appliances used in any currently operating system have
been designed to process variable solid waste, but rather have been
adapted from other industrial applications. It 1is currently better
known what most equipment does rather than why it works (or doesn't) on
solid waste.’’ Processing plants often contain a nearly randomly sequenced
range of poorly selected, adejuate, and brilliantly designed equipment,
with the aggregate result of nonoptimal system reliability, controlability
and predictability. The proper performance of many systems depends upon
skilled labor with qualifications both to operate advanced and adapted
equipment and to innovate quick, artful changes in the process to obtain
desired output., To guarantee smooth operation of such plants for an
acceptable economic life is highly risky. The high degree of complexity
in using DRDF is exceeded only by the magnitude of the challenge with
which the problem confronts the engineer and scientist. 1In eicher case,
vigorous scientific inquiry 1is needed and should be encouraged.

FIELD ERECTED SYSTEMS

These systems (Figure 31) are usually more reliable than those
reviewed above, Data from plancts such as the Naval waterwall incinera-
tor in Norfolk, VA, are beginning to lead to improved plant designs.
Operational data from modern plants indicate that shredding of delivered
wagte is being recommended more often to improve furnace performance
(Figures 32 and 33).
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The theoretical advantages of shredding are numerous. It loosens
and reduces _he waste to a smaller and more easily handleable particle
size range,’'®’?? increases the charge's surface/volume ratio and hence
improves its combustion performance, ballistically rejects many bulky
incombustibles which adversely affect combustor material, and by mixing
makes the charge somewhat less variable than its unprocessed feedstock."®
But along with shredders come the disadvantages of plant problems in
maintenance, reliability, materials handling, and safety.

A variety of relatively short-term shredder maintenance data exists,“!
and indications are that complete overhaul must be done as much as 12
times annually, that most hammers on hammermills must be replaced after
400 to 1000 tons (363 mt to 908 mt) have been processed, and that hammer
hardfacing or tip rewelding must be done daily (Figure 34). The latter
task requires about 4 hours per shredder. Cyclic maintenance require-
ments are not fully known. In the case of hammer replacement, worn
hammers must ordinarily be disposed of, since most are made of speciali-
zed hardened steel which has no use in the current salvage market.

Reliability of shredders is very speculative, It is not unusual
for unforeseeable downtime to last geveral weeks until special replace-
ment parts are made, delivered, and installed, and the unit is tested.
Shredder explosions are not infrequent and, aside from unit outage,
endanger plant personnel. Explosicns may be caused by a varlety of
phenomena, including discarded explosive materials in the waste, pres-
ence of volatiles such as solvents and gasoline, and ignition of suspended
dust by sparks generated when the hammers strike other metallic objects
in the feed, Despite the well-publicized dangers of shredders, uany
processing plants persist in atationing personnel (such as pickers to
remove adverse materials from the feed conveyor) close to the units.
Some plants have installed acoustic/blast partitions around shredders,
with breakaway panels in the roof to accept the forces and shrapnel
liberated by the explosion.

Other hazards involving shredders are dust (including airborne
bacteria and viruses) and fire. Modern plant designs include an air
hood near the shredder to prevent a dangerous concentration of dust near
the unit."? Despite the obvious possibility of fire spreading rapidly
throughout the waste processing system, many designs neglect adequate
fire protection, either in the form of special construction, a quench
system, nr clearly marked personnel escape routes.

Although the disadvantages associated with shredding are numerous
and serious, at the current state of the art, neither the disadvantages
nor the advantages (in the form of improved combustor performance) can
be quantified in a cost-benefit manner to provide a basis for decision
making.

Other problems revealed in the field erected systems which are not
apparent in most large incinerator plants include sanitation and pest
control. It 1is prudent to plan a sufficient budget for these items.




Scientific research has brought us improved firing and stocking
methods, so that the double reciprocating grate (Figure 35) is now pre-
ferred over the conventional traveling grate (Figure 36) and other con-
figurations.”? This advanced stoker will be installed at Ft. Monmouth,
NJ, where purchased shredded RDF will be fired in a converted boiller.
The frequent and costly grate burnout problems encountered with con-
ventional traveling grates (necessitating bar replacement as often as
once a week) will probably be far reduced.

Despite advances in stoking mechanisms, it is still not uncommon
for severe problems to occur when a technology workable at one location
is transferred to another. One recently built municipal waste incinera-
tor is equipped with a stoker configuration having relatively long
operational success in Europe. But European refuse is wetter, contains
fewer high calorific value materials, and has a lower heat release rate
than the waste in the U.S, city where the stoking technology was adapted.““
As a result, to protect the maladapted stoker from severe thermal damage,
a water spray had to be installed near the incinerator feed threat. The
plant continues to operate with lower than desired efficiency and still
experiences numerous operational difficulties.

For Army-scale operations, it is preferable to employ a front-
end loazder handling system instead of the less reliable pit-and-crane
system wherever possible. Front end loaders have been proven capable of
moving as much as 650 tons/day (590 mt/day),“® indicating their potential
applicability even in large regional waste management operations. The
recommended loader is propane-fueled, with filled tires.

When designed properly, field erected systems will function in a
) way far superior to modular incinerators and DRDF at the current state
of the art. This is not to say there are no challenges. Areas of
J unknowns include slagging potential,"® grate fouling, corrosiom,"’ if
and how to sshred,"a how to cope with the -rariability of ingut material
in design and practice,“g and combustion control methods.® There is

also a need for economic data to provide a sound base for life c¢ycle and
value analyses in assessing the feasibility of applying a similar tech-~
nology elsewhere, N
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CLOSURE

The goals of recovery programs set forth in the Introduction are
critically important, and perhaps no one knows this better than the
Facilities Engineer. He is acutely aware that by reducing the resources
allocated to waste disposal/recovery and energy production operations,
equivalently more resources can be made available for more direct support
of the defense-oriented mission of the installation, and ultimately, of
the soldier., This 1Is what he is working for, and it is the business of
the responsible engineer and scientist to support him in this effort.

There is no question that the future holds great promise for recover-
ing energy from installation solid waste., But at present there exists
no small-scale energy recovery technologies which can be implemented
with guarantee of predictable, trouble-free operation. Some currently
promoted systems might perform adequately, but many more will do little
but consume valuable resources that better could be put to use elsewhere.

That the majority of currently operating energy recovery systems do
not perform dependably does not reflect "shortcut" engineering, but
inatead underscores the absence of the design data necessary to create a
P cticable facility. An important goal of the research engineer's work
is to develop systems based on a firm foundation of scilentific fact and
not a resource-intensive, hit-and-miss approach. Thz goals of recovery
programs provide sufficient motivation for accelerated scientific re-
search and development, and the time to proceed 1s now.
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Figure 2. Time-variability of Solid Waste Composition at an
Army Installation. A waste survey during week 15
would yleld different conclusions about resource
recovery than would a survey in week 32.
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Controlled Air Incinerator (First Major Configuration).
Stationary bed furnace has throughput capacity no greater
than 1 ton/hour, and must often be derated.
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Figure 10. Controlled Alr Incinerator (Second Major Configuration
Front View). '
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Figure 13. General Operation of Rotary Kiln Package Incinerator.

29




*3o03eaaufduy adexoed uryy Lieloy uf uolisnqmo)d HY aan314
voILOUI{oV) JO 98ibaQ

gy {OJU021I0H
= o2
3 T
spddoy o) - TCYE VTR o1 ISNQu0) UOHIOWIO DS | [ T8N

TR SO R K AR S
R R N M H R 2l NN

usy

, - - / \“\.\R‘.- .. s%.mo_:e uﬁ_ 00
o R S ol

uoHLDI0N

82| q1i8NqWoD




. j01819uFou] o8wydeRg UTTN AIE3Ioy JO uoyreiadp JUILANDIBINNG) PUE JUIZINJUCH

uo1}jub)

Buy joon
U0} 0I0U12V| . uojjsnNquIo) [ T.T $T4;

*¢T 2an314

..s.aAuRTW\Wh\Illllllllllil "

peey

UoLIDIed) UeLINIIR{UNDY

uo11240d(0 (UBIINDUOD

()
™

DA

809

\\ Ny

Mv Jsuing
™

u0|4DIBUSIUY uo|ISNQWO) uol41ub)

Buyjoey
Bbujkig

e ,:.!...u’.\gw.v%{.i!t\ w




o e et

Secondary Chamber

‘ To Air Poliution Control
Afterburner In Or Energy-Recovery Boiler

Continuous Coarse Tongential Air Injection

ROF reed

tgnition Burner

Primary Chamber

Support \

Ash Hopper

Coorse RIF Fed
o
-~
Direction of
Rotation

Combustion Air
Supplied

Figure 16. General Operation of Basket Grate Package Incinerator.
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Predensified Fluff RDF.

Figure 21.
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Figure 23.

plants.

Result of Underdesigning Belt Conveyor After Primary Shredder.
Materials handling is widespread problem in waste processing
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Because of Its Properties, Pelletized RDF Will
Not Generally Exhibit Gravity Mass Flow from
Existing Coal Storage Bunkers.
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Figure 26. Funnel Flow in Coal Bunker. Rathole in DRDF
measures 6 ft in width.

.:Q‘JM.
”
£

' Figure 27. Top View of DRDF Rathole Shown in Figure 26. Depth is
approximately 12 ft. Hopper outlet is visible below
rathole. Outlet measures 2 ft x 2 ft.
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Figure 29. Conventional Weigh Larry. It is improbable that DRDF will
reliably flow through this constricting vessel.
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Figure 30. Standard Mechanical Feeder for Spreader Stoker.
Flow problems may be anticipated in coal feed
hopper. There is potential jamup problem in
rotor area if DRDF degenerates.

45




i - -SRI

“197T0g A13acday

¥BOH Y3ITM 103wisuyoul agsey P239913 PT3T4 jo ardwexy -yg 2an81g
S3LVHO
IVAOWIN ONY ONI LYI0ddIDIN
HON3ND HSVY 318N0a rY¥3dnva
(&
/ I
| \-Nv3 Or
e—_—— 1 v
¥30334 wyy-—1 ¢
_ L y¥388NYIS
Y3INMNEGHIL Y ﬁﬁ _«_8:
¥37108 HVINNVE9
. "4
INVYD #ovis —]
390'88 ONITI3AVYL

P+ g Ml




M g5 e - e e et -

X llll

ll u_*l\

Figure 32. Operation of Vertical Shaft Hammermill.
Ballistic rejects pass through rubber
curtained chute.
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Shredded waste often jams in

Heorizontal Shaft Hammermill.
outlet grate.

Figure 33.
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STATIONARY
GRATES

MOVING GRATES

Figure 35. Double Reciprocating Grate Stoker.

=

Figure 36. Conventional Traveling Grate Stoker. Because of burnout,
grate bar replacement may be necessary as frequently as
once/week.
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